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The effect of a jet flow on an electric discharge is demon~ated 
within the framework of the theory of the magnetic boundary layer 
of the second kind at Reynolds numbers R m >> 1. 

1. In [1] V. N. Zhigulev showed that the interaction 
of a magnetic field induced by a discharge current  with 
a moving conducting medium is localized at magnetic 
Reynolds numbers R m >> 1 in a narrow region of a 
unique magnetic boundary layer.  If  the vector H is 
orthogonal to the plane of the velocity vector  V (mag- 
netic boundary layer  of the second kind [1]); then, as 
has been shown in another paper by the same author 
[2], an electric discharge in the homogeneous flow of 
an ideal fluid converges toward the axis, assuming 
the form of an "electric jet." In the same paper it was 
shown that this effect may be used to obtain high tem- 
peratures,  and a solution of a corresponding thermal 
problem was included. 

In [3, 4] there were examined several  special prob- 
lems concerning the motion of a viscous conducting 
fluid (a jet flow and a homogeneous flow) along a body 
at the surface of which an electric discharge occurs .  

Beside the aspect (of obtaining high temperatures),  
examined in [2], of the problem of a discharge in the 
flow of a conducting medium, the effects of the hydro- 
dynamics of the flow on the form and nature of the 
electric discharge are also of interest.  

In this connection we shall examine some of the 
simplest problems concerning the form of a discharge 
in free laminar jet flows, solutions of which may be 
obtained within the framework of the theory of the mag- 
netic boundary layer  of the second kind. 

Fig. 1 

Assuming, for simplicity, that p = const, and ne- 
glecting the temperature  dependence of conductivity, 
it is possible to use for the velocity profile the solu- 
tion of the corresponding sel f -s imilar  problem. 

In this case, the effect of the magnetic field on the 
motion is limited to the creation of a s ta t ic-pressure  
gradient, the total p ressure  (i. e . ,  the sum P+ = p + 
+ P m =  P + 1/2ttH2) remaining constant. 

Having introduced these limitations, we may speak 
of two effects: a rearrangement  of the electric lines 
of force under the effect of the motion of the medium, 
and a rearrangement  of the temperature field under 
the effect of Joule dissipation. 

The initial equations for the plane steady flow of a 
viscous incomPressible fluid we write in the form 

au jr. v Ou O~u OP+ = O, Ou Ov 
u ~ -  ~-=~ 0~ , 0-V ~ - + ~ - = 0 ,  

OH OH O~H OH OH 

aT aT O'T v_y._ (Ou~ 2 ~ 'v m ( OH ~2 
u - ~ + v  -g~-= a -~{i-y22C Cv \Oy/  - - . ~ p \ - g ~ J  .(1.1) 

2. As a f irst  example, we shall examine the prob- 
lem of a discharge that takes place in the boundary 
layer  at the edge of a plane jet. Let (see F ig .  1) a uni- 
form flow of a viscous incompressible fluid run off a 
flat plate into a medium at res t  or  one that moves in 
the manner of a wake flow. Starting from the edge of 
the plate, a boundary layer  forms in the flow, which 
possesses  a character is t ic  velocity profile u(y), as 
shown in  Fig. 1. Let us assume that between the edge 
of the plate and a region ve ry  distant from it there is 
a constant potential difference. :In the absence of mo- 
tion, the electric charge would closely resemble a cy- 
lindrical one (the edge of the plate that forms the Oz 
axis is the symmetry  axis). 

In the presence of jet-flow motion, the velocity pro-  
file is described by the known formula [5] 

s ) u~ F ' ( ( p ) = t +  2 \ u z - - t  (t--erfrp), 

t [ u~ ~'/, y ( 2 1 )  r =-~ \%E/ ~"  

When 

H = H ~ ,  T = T , -  ,: :, at y = + ~ ,  
H = - - H ~ ,  T = T ~ :  at y = - - c r  (2.2) 

are taken as the boundary conditions for the magnetic 
field and temperature,  the s imilar  solutions 

H + H ~  ~ h T- -T~ 
2Hco (q)), -- 0 (~) (2.3) T1 -- T2 

of the ordinary differential equations 

h" + 2P,~ Fh'  = 0, 

O" + 2PFO' = S ~ (h ' f  
pn, 

with the boundary conditions 

! 
~S= 4H~ T~)) (2.4) 

pCp (Ti~ 

h = O = t  
h = O = 0  

at ~ = §  (2.5) 
at ~ = - - ~ ,  
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may be wr i t t en  in the form 

- - co  - - oo  

o (r = Oo + s (1 - -  0 o ) 0 .  
(2.6) 

- - o o  - - o c  

w ~ 

P f 
- - oo  0 

where  P and Pm are the hydrodynamic  and magneto-  
hydrodynarnie Prandt l  numbers,  respec t ive ly .  

As an i l lus t ra t ion ,  Fig. 2 shows the computat ion 
resu l t s  for a s imple  example,  where  the curve 1 yields  
F ' / P ,  the cu rves  2, 3, and 4 cor respond  to the values  
of Pm = 1, 0.5,  and 0.25, and the curve  5 co r responds  
to P =  l f o r c r ~  T. It may be seen that, jus t  as in [2] ,  
the c u r r e n t  prof i le  has a symmet r i c  s t r eaml ine  shape, 
while the t e m p e r a t u r e  prof i le  is a s y m m e t r i c .  

If the t e m p e r a t u r e  dependence of the conductivi ty 
is  taken into account,  then, for an i ncompres s ib l e  
fluid, the p rob lem reduces  to the in tegra l  equation 

--oo --oo 

r 

= exp 2Pq) I FO'd(~. (2. (1) ((p) 7) 
- - o o  

Here, the cons tan t  C is defined by the express ion  

- - o o  

I - co  ca  @ 

• < ii , 

--~x~ - -OO 0 

- - c o  0 

A (numerical )  solut ion for  a specific dependence of 
or(T) leads to a sti l l  g r e a t e r  na r rowing  of such a region.  
Here a pecu l i a r  avalanche-Wpe meehan i sm takes  e l -  
fee t - - in  the region where the c u r r e n t  passes ,  the tern-  
pe ra tu re ,  and with it the conductivi ty,  i nc reases ,  which 
in tu rn  leads to an i nc r ea se  in cur ren t ,  and so forth. 
An idea of this is given by the dashed curve  in Fig. 2 
[in the ease  of a l i n e a r  dependence of (r(T)]. 

3. The p rob lem of a plane jet  source  is solved in 
the same  fashion.  The solut ions of the equat ions of 
this  p rob lem mus t  sa t is fy  the boundary  condit ions 

at  y :=O,  
du / dg = O, v = O, 

at y -- • -~, 
u = 0 ,  H = ~ H o o .  

H = 0 ;  
(3.1) 

The veloci ty  d i s t r ibu t ion  in the jet  in this case has 
the form 

i 
" - -  F '  (~1 = ~ ,  

t l a S , ~  'i' i ( z= k 'i, 
u,. -- -2- hp'~-%/ ' ~P = g t 6 ~ /  g, 

I~ == I. pu= = Const. (3.2) 
- - o o  

Int roducing the condit ion that the solut ion is  nont r iv ia l ,  

oo 

I aHdg = K ~ O ,  
0 

(3.3) 

we obtain for the magnet ic  field a d i f ferent ia l  equation 

h" + 2P,,Fh' = 0 (h (+ ~r = l. h (-- o~) = -- t).(3.4) 

The solut ion has the form 

c a  - 1  

- - oo  - - oo  

As for the energy  equation, we shall  solve it for 
two va r i an t s  of the boundary  condit ions for the t e m -  
pe ra tu re :  s y m m e t r i c  (A) and n o n s y m m e t r i c  (B) with 
respec t  s velocity.  

Fig.  3 
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Fig. 2 

Case A 

ar=O ( a " )  a~ -~-=0 at y = 0 ,  

T = T o o  ( u = O )  a t  y = - { -  c ~ .  (3.6) 

We shal l  wr i te  the energy equation in the form 

u'a ~_(H~_Hc~,)) (3.7) (r[ : :  z-- i~ + --7- + 
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For Prandtl  numbers P = Pm = 1, the equation (3.7) 
admits a simple integral, analogous to the Crocco in- 
tegral  in conventional gasdynamics,  

II ~ C1u "-b Ca , ( 3 . 8 )  

Taking the boundary conditions into account, we 
have 

4 I ~ '/, ( :o~ ,'/, i =i~176 ,pv~/ ch-2q~--0"t03~-r~/ • 

x ch-4 ((p) __ ~//~ - ~ -  [(h ((p))-~ --  tl (3.9) 

uIIdy . 
- . . . .co 

The velocity, current,  and temperature profiles 
will be symmetrical ,  with maxima on the jet axis. 

Case B 

4. Let us also determine the magnetic field and 
current  distribution for an axisymmetric  jet source 
having a velocity profile that corresponds to the ex- 
pression 

u ~ F' ((p) t 
u ~  (p -- (I -~ ~/s~2) 2 ' 

u m =  g ~  , r = \8~pv.~x.~] y ,  (4. I) 
c o  

I~: --  2~ ~_ ypu2dy = const. 
0 

The initial equation 

with the boundary conditions 

T = T~ at y = + r  T = T~ 

Postulating 

at y = - - ~ .  ( 3 . 1 0 )  
H = 0  at y=0,  H ~ H r  at y-----~ 

admits a s imilar  solution of the equation 

(4.3) 

T -- T~ 
= O (q~), (3. II) 

we get the equation 

O" + 2PFO' ~ s S (h') ~ = O, 

(o(+~)=i, e(--~)=--i). 
(3.12) 

The solution has the form 

e ((p) = eo (~) + s (eoe~ (~ )  - -  e~ ((~)), 

- - 5 O  ~ * 

- - 0 0  ~ 0 0  

In this case both current  and velocity profiles will 
be symmetrical ,  while the temperature profile will 
resemble the corresponding profile for the edge of 
the jet. Figure 4 gives the results  of computations 
f o r P = P m  =1,  where the c u r v e s l ,  2, 3, 4, 5 c o r -  
respond to the v a l u e s S = 0 ,  1, 2, 3, 4. 

i 
[ 

! 
K 

-I ~ -2 

(~h')' + P m  (Fh)' ---- 0 (4.4) 

in the form 

(._~_)P,- 
(4.5) 

The energy equation of this problem is not inte- 
grable in quadratures, even for P = 1. 

It should be noted that analogous solutions might 
be obtained for turbulent jet flows if one proceeds from 
conventional semi-empir ical  schemes. Qualitatively, 
the results would be the same; quantitatively, a wider 
turbulent jet would lead to s tronger compression of 
the current  sheet. However, the validity of an exten- 
sion of conventional computation methods (e. g.,  the 
displacement path theory, and other methods) to in- 
clude the motion of a conducting medium in the range 

o f  large magneti~c Reynolds numbers Rm requires spe- 
ciat  verification. 
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